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Abstract. There is growing interest in studying the Human Visual Sys-
tem (HVS) to supplement and improve the performance of computer
vision tasks. A major challenge for current visual saliency models is pre-
dicting saliency in cluttered scenes (i.e. high false positive rate). In this
paper, we propose a fixation patch detector that predicts image patches
that contain human fixations with high probability. Our proposed model
detects sparse fixation patches with an accuracy of 84% and eliminates
non-fixation patches with an accuracy of 84% demonstrating that low-
level image features can indeed be used to short-list and identify human
fixation patches. We then show how these detected fixation patches can
be used as saliency priors for popular saliency models, thus, reducing false
positives while maintaining true positives. Extensive experimental results
show that our proposed approach allows state-of-the-art saliency meth-
ods to achieve better prediction performance on benchmark datasets.

1 Introduction

Visual attention is an integral function of the Human Visual System (HVS). By
focusing on a limited set of locations in the field of vision, the HVS prioritizes
the distribution of perceptual resources to various locations in the visual field,
making them more salient than others. There is substantial evidence of this
non-uniform distribution in eye-fixation data [1], i.e. of parsimonious fixation on
certain visual regions. Given a stimulus image, fixation points generally occupy
a very small percentage of the overall number of image pixels. The thrifty allo-
cation of processing resources is a result of visual attention. This process makes
the recognition of patterns in the visual input computationally feasible. The
phenomenon of visual attention in the HVS has received consideration in recent
decades, particularly in the field of psychology and neuroscience [2]. These stud-
ies help understand the HVS better and are useful for a myriad of vision tasks
including object recognition [3, 4], object detection [5] and action recognition [6].

Since eye fixations play an important role in object recognition/detection,
a signicant amount of work has been done to automatically detect such fixa-
tions in images. Interest point detectors [7] output a particular set of points that
are considered “interesting” and are extensively used in many computer vision
systems. However, recent work [8] suggests that these detectors may have low
perceptual relevance and are very weakly correlated to the HVS. In contrast to
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Fig. 1: Elements in the background distract saliency models. Example image
showing saliency methods performing poorly due to background clutter. The last image
shows human fixations in yellow and the detections of our proposed model in green.
Our model is not significantly affected by background clutter, so it can be used to
reduce false positives in various saliency methods.

interest point detectors, computational saliency models create pixel-level prob-
ability maps with the goal of predicting locations that have a high chance of
attracting human attention. A wide variety of models have been proposed to
compute visual saliency and have been shown to be useful in several vision
tasks, such as object recognition [9] and image thumbnailing [10] among others.

Most saliency models generally perform well when applied to images contain-
ing a few salient regions. However, as recently reported in [11], a major challenge
for these methods is predicting human attention in scenes containing various ob-
jects and distractors. Figure 1 shows an example of such a case wherein popularly
used saliency methods tend to get distracted by background clutter resulting in
poor prediction performance.

In this work, we propose a system that addresses this issue and improves the
performance of popularly used saliency methods by reducing false positives. Our
proposed system learns directly from human fixation data and utilizes biolog-
ically plausible low-level features to automatically and reliably identify image
patches where humans might fixate in a free-viewing setting. We then use the
detected patches as saliency priors to improve the performance of several state-of-
the-art saliency models [12–20]. Through extensive experiments, we demonstrate
the effectiveness of our method in improving the performance of these models on
benchmark eye-tracking datasets. The models used in our experiments include
some of the most recent and top performing saliency models in current literature.

Related Work: Following the classical algorithm of Itti and Koch [15], a num-
ber of researchers have worked to study visual saliency and the mechanism of
eye fixations in the HVS. Itti and Baldi [21] studied bayesian surprise quanti-
tatively to measure the extent to which humans direct their gaze to surprising
items. A spectral residual approach for saliency detection was described in [12].
[13] proposed a bayesian framework for saliency using natural statistics. Harel
et al. [14] proposed a bottom-up graph based saliency model. Judd et al. [22]
employed machine learning techniques to develop a saliency model based on low,
mid and high-level image features. More recently, a saliency method based on
forward whitening of low-level features was proposed [16, 17] and been shown to
outperform various other methods across several datasets in [11, 23]. We refer
the reader to [24] for a recent survey on visual saliency modelling.

Most of the above described methods aim to predict the exact locations of
human fixations yet it is unclear whether human fixations are deterministically
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Fig. 2: Humans tend to look at the same region but not the same locations.
Sample images with fixation points from different human observers plotted in different
colors. Note the varying spatial distribution of fixations between observers.

repeatable locations in the visual field. As evident from data in [22], empiri-
cal evidence points to the conclusion that no two humans fixate on the same
points while freely viewing the same image (refer to Figure 2 for an example).
Nonetheless, these fixation points tend to lie in close proximity to each other
and fixations from different humans do share similar spatial neighborhoods in
the same image, thus, comprising an image region that we coin a fixation re-
gion. For simplicity and computational convenience, this spatial neighborhood
can simply be modeled as a rectangular image patch.

As the main contribution of our work, we train a discriminative model to
automatically identify fixation patches in an image. We then use the fixation
patches as priors to reduce false positives in an effort to bridge the gap between
current saliency models and human performance. This follows from our previous
argument that saliency models tend to perform poorly on cluttered scenes.

The paper is organized as follows. Section 2 describes the feature extraction
and training stages of our patch detector. Section 3 describes our proposed ap-
proach in the context of saliency model improvement. Experimental results are
reported in Section 4 followed by discussion and analysis in Section 5.

2 Proposed Method: Fixation Patch Detector (FPD)

In this section, we give a detailed description of our learning based approach,
which is is illustrated in Figure 3. Given an input image, we first divide the
image into a set of non-overlapping patches. Patch extraction is followed by fea-
ture extraction wherein the extracted patches are represented by low-level and
biologically inspired image features. Finally, a classifier is trained to identify im-
age patches that attract human attention. These regions are denoted as fixation
patches. In the rest of the paper, we refer to our proposed method as the Fixa-
tion Patch Detector (FPD). Next, we provide a detailed description of the steps
involved in learning the FPD, namely feature extraction, and classifier learning.

2.1 Feature Representation

Although it is well known that human attention (even in the free-viewing case)
is driven by both low-level (e.g. image intensity and gradients) and high-level
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Fig. 3: Overall framework for our proposed fixation patch detector. (1) patch
extraction, (2) feature extraction and (3) classifier learning.

features (e.g. familiar objects in the image), we focus on the former in this
paper for simplicity. Our approach sheds light on how low-level features might
influence human visual perception and discernibility. In this work, we propose a
model that allows the prediction of image patches that have a high probability
of attracting human fixations. We develop this model with the following three
observations in mind.

(1) A viewer will fixate on a patch of the current image if he has fixated upon
a similar patch before.

(2) A viewer will fixate on a patch that differs significantly from the patches in
its local neighbourhood.

(3) A viewer will fixate on a patch within which there is a high degree of dis-
similarity among pixels.

The basis for (1) is “familiarity”, whereby humans are notoriously well
equipped to recognize familiar objects, i.e. objects similar to those seen be-
fore. As such, we extend findings from previous studies [25, 26] and propose that
humans also recognize and fixate on familiar salient regions in an image, i.e.
previously seen salient patches. In other words, a human, who has fixated on a
salient patch in one image, tends to fixate on a similar looking patch in another
image. The basis for (2) is “surprise”. As suggested by [21, 27], humans tend to
fixate upon surprising items within the context of a scene. As such, patches in
an image that significantly differ from their surroundings are expected to cause
visual surprise in human viewers. Finally, observation (3) indicates that the con-
tent of an image patch plays a major role in attracting visual attention to this
patch. In fact, humans tend to fixate more on image patches with heterogenous
content than patches with a low pixel dissimilarity (i.e. intra-patch dissimilarity)
[28, 29]. As such, the basis for (3) is “variance”.

The above observations encourage the use of different sets of low-level image
features. Therefore, we represent an image patch using four feature vectors. To
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encode observation (1), we use the popular Fisher kernel framework to extract a
Fisher feature vector that describes local appearance information within a patch
by relating it to previously encountered fixation patches. Observation (2) moti-
vates the creation of an inter-patch self dissimilarity histogram, which describes
how dissimilar an image patch is from its direct surroundings. Finally, we encode
observation (3) using an intra-patch dissimilarity histogram, which describes
how heterogenous a patch’s appearance content is. To supplement these three
features and to encode spatial information in our model, we use the normalized
location of the patch center in the image to encode the spatial distribution of
salient fixation patches. This spatial feature is motivated by the study of regional
focus in the HVS, which is deemed independent of image properties, as well as,
the work presented in [22, 30], which indicate that eye tracking datasets have a
strong bias towards human fixations near the center of the image (the so-called
center bias). As such, we divide each image I into a set of patches PI, each
of which is represented by the four features described above and use them to
train and test a fixation patch detector (FPD). This learned FPD will ultimately
predict the likelihood of a patch attracting human visual attention.

Fisher Feature (F): Based on observation (1), we represent each patch ρ ∈ PI

according to how similar it is to fixation and non-fixation patches observed in
the training images. We describe how these ground truth patches are detected
during training in Section 2.2. In this work, we choose to represent ρ using the
Fisher kernel framework [31]. Here, a set of pixels in ρ (e.g. pixels with largest
gradient energy) is selected as representative instances of a patch of an image.
These instances are described by the conventional SIFT descriptor (spatially
localized histograms of oriented gradients). To account for the variability of these
SIFT vectors in the training set, a universal Gaussian Mixture Model (GMM) is
constructed on the set of all training patches [32]. Using this universal GMM, the
Fisher kernel feature of ρ is computed. If a patch ρ ∈ I has a set of representative
instances Ω, its corresponding Fisher vector (F) is computed as in Eq. (1).

F(ρ) =
1

|Ω|
∑
j∈Ω
∇γ ln p(j|γ) (1)

Here, ∇γ is the gradient operator with respect to the Gaussian model pa-
rameter set γ (i.e. mean vector and variances). The Fisher feature is selected
for its convenience in representing patches with different sized Ω using the same
sized feature vector. In fact, our use of this type of feature is motivated by the
noteworthy performance of Fisher features in other vision tasks including im-
age classification [33]. Note that this Fisher-GMM framework is used in [34] for
saliency detection, where it is assumed that images sharing global visual ap-
pearance are likely to share similar salient regions. Inspired by this work, we
extend the framework on the principle that salient patches themselves are sam-
pled from similar distributions that govern their local appearance. In that sense,
our proposed method is a patch-based detector of human fixation.
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Inter-Patch Dissimilarity Feature (D1): Motivated by observation (2), we
measure the dissimilarity of a patch ρ ∈ PI with its direct neighbors. This dissim-
ilarity can be computed in several ways, since it is highly dependent the features
used to describe each of the patches. In this paper, we define the dissimilarity of ρ
to its neighbors as the average difference in internal heterogeneity of the patches.
In this case, a patch that is reasonably homogenous (i.e. whose appearance has
minimal variation) is quite dissimilar from a patch that is heterogenous (i.e.
whose appearance has significant variation). Therefore, patch ρ is represented
by a self-dissimilarity descriptor, which is computed from the self-similarity de-
scriptor in [35]. This self-dissimilarity descriptor is a matrix that is measured
densely throughout the patch and serves as a measure of how heterogenous the
patch’s interior is. One of the main purposes for using self-similarity is that it
captures the internal layout of a patch efficiently by unifying color, texture and
edge patterns. It is noteworthy to mention that self-similarity has been shown to
be an effective feature in several vision tasks and has been recently made compu-
tationally efficient for large resolution images [36]. To the best of our knowledge,
this work is the first to apply self-similarity to the study of human fixations.

To compute the inter-patch dissimilarity feature D1 for ρ, we compute the
histogram of the pair-wise Euclidean distances between the self-dissimilarity de-
scriptor of ρ to those of its neighbours. This is the second ingredient of our FPD
and it encodes “surprise”.

Intra-Patch Dissimilarity Feature (D2): Based on observation (3), we rep-
resent the inner content of patch ρ using a self-dissimilarity descriptor, as de-
scribed before. The intra-patch dissimilarity feature D2 is then computed by
constructing a histogram of the self-dissimilarity descriptors within patch ρ.
This is the third patch feature and it encodes “variance”.

Spatial Location Feature (C): Since the saliency of a patch might also be
affected by its spatial location in the image, we represent each patch with a
fourth feature C, which is simply the normalized 2D coordinates of its center.
This feature encodes “locality”.

2.2 Classifier Training

This section describes how we train the classifier that will be used in FPD.
Specifically, we discuss the details of preparing a fixation patch training dataset
and subsequently the patch classification method.

Training Set Preparation: To train a fixation patch classifier, we require
ground truth samples (positive and negative) of fixation patches. These patch
samples are not readily available and manually annotating them is quite tedious,
so we propose an automated way of inferring them using a dataset Dall of im-
ages and their corresponding human fixations from multiple observers. First,
each image I ∈ Dall is divided into a set of non-overlapping square patches PI ,
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where the size of each patch is taken to be M ×M pixels. We score each patch
in PI based on the probability that a human fixation falls inside it. To compute
this score, we construct an RBF kernel density estimate of the spatial distribu-
tion of all human fixation locations in image I, denoted by pF (x|I) where x is
an individual pixel in I. The score of patch ρ ∈ PI, denoted as r(ρ), is com-
puted as the pixelwise average probability of all pixels in ρ. Mathematically, we
have r(ρ) = 1

|ρ|
∑

x∈ρ pF (x|I). After scoring all patches in I, we define ground

truth fixation patches (labelled +1) as those with a score greater than a pre-
defined threshold τ . Patches with scores less than τ are defined as non-fixation
patches (labelled -1). Selecting a suitable τ for each image is not trivial. In our
experiments, we take τ to be a predefined multiple of the peak value of pF (x|I).
Examples of pF (x|I) and ground truth fixation patches are shown in Figure 4.

Fig. 4: Ground truth fixation patches. In each image, human fixations are plotted
in yellow. The spatial density estimate of these fixations and the ground truth fixation
patches (in white) are also shown. Non-fixation patches are patches whose average
probability of containing a human fixation is below τ = 8% of the peak probability.

Patch Classification: We apply PCA on the training set to reduce the dimen-
sionality of the Fisher feature vector F. Then, a standard RBF-SVM is trained
on each of the four feature vectors separately: F, D1, D2 and C. Another SVM
is then trained on the confidence values generated by the four individual SVMs.
Learning is performed in this manner to isolate the effect of each feature type
individually. This serves as the patch classifier for the FPD.

An important property of this fixation patch training set is that it is strongly
unbalanced towards negative patches, i.e. non-fixation patches. This is primarily
due to the sparsity of human fixations in an image. To overcome this significant
data bias, conventional undersampling is incorporated in learning the classifier.
In Figure 5, we show detection results using each of the individual SVMs as
well as the combined classifier. Clearly, the latter classifier is able to effectively
combine the individual SVM responses to accurately predict the fixation patches.

3 Saliency Enhancement

The patches predicted as non-fixations by our FPD method suggest that they
are of little value to human observers. Therefore, giving less importance to such
regions in saliency maps generated by popular visual saliency methods may im-
prove the performance of these methods. Consider a set {sk}Σk=1, where sk is
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Fig. 5: Patch Classification. Detection results of SVMs using individual features
(left to right): Fisher F, inter-patch dissimilary D1, intra-patch dissimilarity D2, and
location C. The rightmost is the result of their combination and the proposed FPD

the kth saliency model in a set Σ. Given an input image I, the kth model pro-
duces a saliency map sk(I). In an effort to improve saliency map prediction, we
update sk(I) by combining the pixelwise saliency values with the corresponding
pixelwise decision values returned by the FPD. This process effectively reduces
the saliency of pixels inside predicted non-fixation patches. An added advan-
tage of this strategy is that our FPD can also help to increase the saliency of
pixels within fixation patches in case a saliency method misses strongly salient
locations within these patch. In fact, we will show empirical evidence that ver-
ifies that our FPD allows popular saliency models to achieve better prediction
performance on benchmark fixation datasets by reducing false positives, while
maintaining true positives.

4 Experiments and Results

This section provides a quantitative analysis of our proposed FPD and empiri-
cal evidence showing that combining FPD with state-of-the-art saliency models
improves their overall performance.

4.1 Dataset Description

To train the FPD, we use the MIT dataset [22] due to the diverse topical content
of its images. This dataset contains 1003 high resolution images with human
fixation data from 15 users per image. Maintaining the aspect ratio, each image
is downsampled to no more than 216 pixels. These images form our dataset Dall,
which is randomly divided into Dtrain (903 images) and Dtest (100 images) using
K-fold cross validation (K = 10).

4.2 Parameter Settings

We use the same parameter settings in all our experiments. Based on cross
validation results, each patch is taken to be M ×M pixels with M = 64. Note
that the FPD can be scaled to any patch size to suit application needs with
adherence to runtime constraints. Of course, our proposed approach can be easily
extended to multiple scales for more fine grained detection, accompanied by a
linear increase in runtime. The value of the ground truth labeling threshold τ is
set to 8% of the peak probability estimated using kernel density estimation.
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4.3 FPD Performance Evaluation

Before evaluating the performance of the proposed FPD for saliency improve-
ment, the predicted positive patches are compared to the ground-truth. The
performance of the model is represented by its average positive accuracy p and
average negative accuracy rate n. Using 10-fold cross validation, the FPD per-
forms significantly well with p = 84% and n = 84% showing that the learned
FPD can indeed be used to short-list and identify human fixation patches.

To evaluate the FPD’s ability to enhance popular saliency methods, we com-
pare the accuracy of each saliency method with and without our prior. We show
results on Dall for 8 recent and state-of-the-art saliency models, namely SR [12],
SU [13], ES [18], GB [14], IT 1 [15], AW [16, 17], YI [19] and BM [20].

Out of the many evaluation measures that have been used for comparing
saliency models, ROC is the most widely used. The ROC curve is a measure
of how well a saliency map can distinguish fixation and non-fixation points for
different binary saliency thresholds. However, recent studies suggest that ROC
is not always an ideal metric for comparison [37, 38, 11], since it only depends
on the ordering of the fixations. As shown/argued in [37, 38], as long as the
true positive rate is high, the area under the ROC curve (AUC) is always high
regardless of the false positive rate. On the other hand, the main aim of our
framework is to reduce false positives generated by a particular saliency model,
while keeping this method’s hit rate the same. Since ROC is affected more by
the hit rate rather than false alarm rate, it is not suitable for a comprehensive
evaluation of our proposed framework. Instead, we use two other popular eval-
uation measures, namely the Linear Correlation Coefficient (CC) [24, 11] and
Normalized Scanpath Saliency (NSS) [39]. CC measures the strength of the
linear relationship between a saliency map and the ground truth map, with an
absolute value close to 1 indicating an almost perfectly linear relationship be-
tween the two. The NSS measures the average distance between the fixation
saliency and zero with a larger NSS implying a greater correspondence between
fixation locations and the saliency predictions [37].

Fig. 6: Performance evaluation on MIT dataset. Average CC and NSS scores
before and after applying the FPD on 8 state-of-the art saliency models. The FPD
improves each score significantly for all tested methods.

1 Note that there are different versions of Itti’s model. Here, we used the best per-
forming version in [14].
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Figure 6 shows the average CC and NSS scores across all images in Dall for
each saliency method before and after applying the FPD to the resulting saliency
map.2 Clearly, there is a significant improvement in both CC and NSS scores,
which verifies the ability of the FPD to benefit each saliency model. Interestingly,
our saliency prior is even able to enhance the performance of BM and AW, the
top performing saliency models according to current literature [11, 23, 20].

Table 1: Percentage of images for which CC and NSS is increased. For each
saliency method, we report the percentage of images for which the scores were increased
after using the FPD.

Saliency Method SR SU BM ES GB IT AW YI

CC 81% 82% 81% 73% 67% 71% 76% 72%

NSS 86% 85% 80% 82% 67% 71% 80% 76%

Table 1 reports the percentage of images for which the CC and NSS scores
were increased for each method. On average, we increase the CC score for over
75% of images and increase the NSS score for over 78% of images across all
methods. In particular, our proposed FPD increases both scores for SR, SU
and BM on over 80% of the images. Table 1 along with Figure 6 clearly show
that higher performance is achieved when any of the saliency methods is simply
combined with our proposed FPD.

Next, we test the performance of our FPD on another popular image dataset
widely used for saliency evaluation. We use the FPD trained on Dtrain from the
MIT dataset (refer to Section 4.1) and test it on the dataset in [40]. Since the
training and test sets are different, this evaluates the generality of our method
and its ability to transcend dataset specificities. Figure 7 shows mean scores
across all images for each saliency method before and after using our method.
The FPD is successful in improving the performance of all the saliency methods
for this dataset as well. Interestingly, we once again observe a significant increase
in performance for the top performing methods (AW and BM). Since combining
these two models with our FPD significantly outperforms all other models, we
recommend using this combination for future applications.

4.4 Center Bias

Even though the location feature in our model does not introduce any explicit
center bias to the saliency maps (as our method focuses mainly on decreasing the
false positives), it is still important to verify that the improvement in saliency
performance reported in the previous section is not merely due to the location
feature. It has often been pointed out in the literature that the issue of center bias
is a major challenge for comparing saliency models. Several solutions have been
proposed to eliminate center-bias effects, with the shuffled AUC metric being the

2 Due to differences in image resolution, the reported scores of the saliency models are
slightly different from those reported in [11, 23]. However, the relative performance
of the models is not significantly affected.



Improving Saliency Models by Predicting Human Fixation Patches 11

Fig. 7: Performance evaluation on Bruce-Tsotsos dataset. Average CC and NSS
scores before and after applying the FPD on 8 state-of-the art saliency methods on the
Bruce-Tsotsos dataset [40]. The FPD improves each score significantly for all tested
methods for this dataset as well

Fig. 8: Comparison of FPD with explicit center bias. Top row - performance of
the FPD on center-biased saliency maps on the MIT dataset [22]. Bottom row - FPD
performance on the Bruce-Tsotsos dataset [40].

most popularly used solution [13, 20, 23]. However, as discussed in Section 4.3,
AUC is not an ideal metric for evaluating FPD. Moreover, shuffled AUC comes
with the drawback of de-emphasizing genuine human fixations around the image
center. For a more comprehensive evaluation, we explicitly introduce center bias
to all the saliency methods as suggested in [11] by applying Gaussian blobs of
varying sizes to each saliency map(centered at the image center and by increasing
the size of the Gaussian by varying the sigma parameter, σ from 10 to 30 units).
Our FPD is then applied to these center-biased saliency maps. This helps us
evaluate the effectiveness of the FPD when the effect of the location feature is
nullified due to the explicit addition of center bias. Since GB inherently adds a
center bias and since we already showed an improvement in its performance, we
exclude GB from this comparison.

Figure 8 shows the average CC and NSS scores after adding the center-
bias and the performance of the FPD on both the original and center-biased
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Fig. 9: Performance evaluation of the FPD on salient object methods. Average
CC and NSS scores before and after applying the FPD on 4 salient object detectors on
the MIT (first two plots) and Bruce-Tsotsos (last two plots) datasets.

saliency maps for both the MIT and Bruce-Tsotsos datasets when σ = 20(as in
the previous section, no training was performed on the Bruce-Tsotsos dataset).
As expected, adding explicit center bias increases both the CC and NSS scores
for most of the saliency methods. However, it is encouraging to see that the
performance of the FPD on the original saliency maps significantly outperforms
the center-biased saliency maps for the top performing models, e.g. BM, AW,
and YI. In addition, for the majority of the methods, the FPD increases the
performance of the center-biased saliency maps as well. This is due to the fact
that the center bias merely increases the saliency at the center. Our method, on
the other hand, reduces the saliency of pixels within non-fixation patches, which
could exist around the image center as well. A similar trend was also observed
for all the different Gaussian sizes, i.e. when the σ value was 10 and 30 with the
FPD increasing the performance in these cases as well. These results strongly
suggest that the increase in the performance of saliency methods in the previous
section is not simply due to the spatial feature C and that our proposed method
plays a genuine role in enhancing the saliency methods themselves.

4.5 Improvement of Salient Object Detection Methods

Motivated by the work in [41] that showed that objects are highly effective in
predicting human fixations, we also test our FPD’s performance with 4 state-of-
art salient object detectors, namely SO [42], MC [43], PD [44], and GM [45].
Figure 9 shows the performance of these methods before and after applying the
FPD for fixation prediction on the MIT and Bruce-Tsotsos datasets. Consistent
with our previous findings, the FPD improves the performance of the salient
object methods as well.

5 Discussion

The experimental results in Section 4.3 show that the FPD is able to short-list
a set of fixation patches in an image with high accuracy and a reasonably low
false positive rate. We also compare of the performance of our FPD against FPDs
built using the 8 different saliency methods as probability maps(in a strategy
similar to that in Section 2.2). The accuracy of our proposed FPD was greater
than 12% with respect to p accuracy and 14% with respect to n accuracy on
average from these FPDs.

To summarize the results of Section 4.3, the performance of our FPD demon-
strates significant promise. Not only does it improve the performance of state-
of-the-art saliency models, but it does so with high consistency and high overall
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magnitude. In particular, our method registers a significant improvement for
top performing saliency methods AW and BM. This suggests that our pro-
posed FPD can be used as a post processing step with saliency methods for
pertinent vision applications. Figure 10 presents some qualitative results of our
proposed approach. We show the output of the saliency maps generated by the
eight different models, before and after applying FPD. The FPD benefits the
saliency models by reducing the saliency of irrelevant background clutter, while
maintaining the saliency of locations with high perceptual value.

Fig. 10: Qualitative results of our proposed approach. Top and third row (left
to right): Shows the input image and the saliency maps generated by 8 methods before
applying the FPD. Second and last row (left to right): Shows the ground truth followed
by our proposed FPD’s saliency maps for each of the methods in the upper row.

Since humans fixate on objects of interest, the patches returned by the FPD
have the potential of covering objects and being useful in higher level tasks. With
this is in mind, we apply the FPD on the PASCAL VOC 2007 object detection
dataset [46], which consists of 5011 images. Since ground-truth bounding boxes
are provided for objects in all images in the dataset, we can evaluate how likely
our predicted fixation patches overlap with these objects. In our experiments,
we train on the entire MIT dataset Dall and use the VOC 2007 Trainval dataset
(containing 5011 images) as the test set. We evaluate the performance of the
FPD by first taking the union of all ground truth object detection windows in
each image I of the test set to generate mask M1. We then take the union of all
the salient fixation patches predicted by the FPD in I to form mask M2. Next,
we find the intersection of all the predicted fixation patches with all the object
detection windows, i.e. compute |M1 ∩M2|, and divide the intersection by the

size of M2 to obtain the overall percentage overlap, i.e. compute |M1∩M2|
|M2| .

We repeat this process for all images in the test set and obtain an average
overlap percentage of 59.6%. This implies that the predicted fixation patches
are not only perceptually relevant in general but they also overlap reasonably
well with object windows. For each fixation patch, we also calculate the highest
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Fig. 11: Experiments on the PASCAL VOC dataset. Figure showing the per-
centage of patches that are covered by an object bounding box by more than x%. An
object bounding box tends to have 60% or more coverage with roughly half the fixation
patches showing the potential of the detected patches to capture salient object parts.

percentage of the patch that is covered by a single object window. This tells us
the relevance of each fixation patch in covering a single object part. Figure 11
plots the percentage of predicted fixation patches that are overlapped by more
than x% by an object window. For x = 50, this percentage is approximately
55%. This signifies that more than half of the predicted fixation patches are
significantly covered by an object window. Interestingly, roughly 35% of these
fixation patches overlap with the object windows completely and reside inside
an object window. Since our patch size is much smaller than the average object
window size, this could possibly suggest that FPD patches have the potential to
find object parts.

6 Conclusion

In this paper, we propose a fixation patch detector (FPD) that predicts image
regions where human fixations reside. We use these fixation patches as saliency
priors to reduce the saliency of pixels within non-fixation patches leading to a
consistent improvement in the prediction performance of several state-of-the-art
saliency methods. The FPD significantly improves the performance of the top
performing saliency methods, thereby suggesting that it can be used as a post
processing step with state-of-the-art methods for future vision applications like
object detection, image thumbnailing, etc.
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